DATE:

August 16 2002

TETRA TECH

200 E. RANDOLPH DRIVE

SUITE 4700

CHICAGO, IL 60601

Attn:

ERIC MONCHEIN

SITE NAME:

Sauget Site H & I

| CASE   | NO LAB                      | NO # OF SAMPLES                                          | SDG        | <u>MATRIX</u> |
|--------|-----------------------------|----------------------------------------------------------|------------|---------------|
| 30721  | AATS                        | 2                                                        | ME21MO     | Soil          |
| 32323  | 2 7 2 7 4 5 7 5 7 5 7 5 8 5 |                                                          |            | ******        |
|        |                             | ata, please check each pack<br>ing deliverables below.   | tage for c | ompleteness   |
|        |                             | ck to Sylvia Griffin, Data<br>filling in the blanks belo |            | t             |
| Data 1 | Received by:                | Date:                                                    |            |               |
| PROBL  | ems:                        |                                                          |            |               |
|        |                             | data is complete, and not ing from the cases noted ab    |            | e are any     |
|        |                             |                                                          |            |               |
| Recei  | ved by Data N               | Management Coordinator, CRL Date:                        |            |               |
|        |                             | Signature:                                               |            |               |
| FROM:  | U.S. EPA                    |                                                          |            |               |

Region V

Central Regional Laboratory 536 S. Clark, 10th Floor

CHICAGO, IL 60605

Sent By: Eva M. Dixon, Sr. Data Specialist

ESAT

# UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION V

| DATE:      | August 13, 2002                                                                   |
|------------|-----------------------------------------------------------------------------------|
| SUBJECT:   | Review of Data Received for Review on                                             |
| FROM:      | Stephen L. Ostrodka, Chief (SMF-4J) Superfund Field Services Section              |
| TO:        | Data User: Tetra Tech                                                             |
|            | eviewed the data for this case. We have also reviewed the CADRI validation files. |
| SITE NAME  | :Sauget Site H & I                                                                |
| CASE NUMBI | ER: 30721 SDG NUMBER: ME21M0                                                      |
| Number and | i Type of Samples: 2 soils                                                        |
|            | mbers: ME21M0,1                                                                   |
| Laboratory | y: AATS Hrs. for Review:                                                          |
|            | are our findings:                                                                 |

CC: Cecilia Moore Region 5 TPO Mail Code: SM-5J Case Number : 30721

Site Name: Sauget Site H & I

Page 2 of 5 SDG Number: ME21M0 Laboratory: AATS

Below is a summary of the out-of-control audits and the possible effects on the data for this case:

Two soil samples numbered ME21M0 and ME21M1 were collected on July 15, 2002. The lab received the samples on July 17, 2002. The sample cooler was 6.2 degrees C upon receipt. All samples were analyzed for metals. All samples were analyzed using CLP SOW ILM04.1 analysis procedures.

Mercury analysis was performed using a Cold Vapor AA Technique. The remaining inorganic analyses were performed using an Inductively Coupled Plasma-Atomic Emission Spectrometric procedure.

The reviewer corrected some results on form 1.

The mercury raw data shows that sample ME21M1 was reanalyzed, and the subsequent result was significantly different from the original. No reason was given as to why the sample was reanalyzed, and this reviewer could see no reason given the information provided. Had the original result been reported, the spike would have been out of control. The lab should be contacted and requested to provide an explanation; until this is provided, all mercury results will be qualified due to a possible low bias from the matrix spike.

Reviewed By: J. Ganz
Date: August 13, 2002

Page 3 of 5

Case Number: 30721

Site Name: Sauget Site H & I

SDG Number: ME21M0 Laboratory: AATS

#### 1. HOLDING TIME:

HOLDING TIME CRITERIA

\_\_\_\_\_\_

Inorganic

\_\_\_\_\_

|         | Holdi   | ng Time  |         | рн       |
|---------|---------|----------|---------|----------|
|         | Primary | Expanded | Primary | Expanded |
|         |         |          |         |          |
| Metals  | 180     | 0        | 2.0     | 0.0      |
| Mercury | 28      | 0        | 2.0     | 0.0      |

DC-280: The following inorganic soil samples were reviewed for holding time violations using criteria developed for water samples.

ME21M0, ME21M1

No problems were found for this qualification.

#### 2. CALIBRATIONS:

CALIBRATION CRITERIA

Inorganic

Percent Recovery Limits \_\_\_\_\_\_

--- Primary --- -- Expanded ---Low High Low High 90.00 110.00 75.00 125.00 80.00 120.00 65.00 135.00 ICP Mercury

No problems were found for this qualification.

#### 3. BLANKS:

LABORATORY BLANKS CRITERIA

The following samples are associated with a negative blank concentration whose absolute value is greater than the IDL. The sample concentration is greater than the IDL but less than 5 times the absolute value of the blank concentration. Hits are qualified

> Date: <u>August 13, 2002</u>

Page 4 of 5
Case Number: 30721 SDG Number: ME21M0
Site Name: Sauget Site H & I Laboratory: AATS

"J". Some non-detect concentration values are sufficiently high that the detection limit may be elevated. These non-detects are qualified "UJ".

Mercury ME21M1

#### 4. MATRIX SPIKE/MATRIX SPIKE DUPLICATE AND LAB CONTROL SAMPLE:

MATRIX SPIKE CRITERIA

Inorganic

Percent Recovery Limits

Upper 125.0
Lower 75.0
Extreme lower 30.0

DC-268: The following inorganic samples are associated with a matrix spike recovery which is low (30-74 %) indicating that sample results may be biased low.

Hits are qualified "J" and non-detects are qualified "UJ".

Selenium ME21M1

DC-269: The following inorganic samples are associated with a matrix spike recovery which is extremely low ( <30 %) indicating that sample results may be biased low.

Hits are qualified "J" and non-detects are qualified "R".

Nickel ME21M0, ME21M1

Pending the resolution of the mercury sample reanalysis issue raised on page 2, the following results are qualified "J".

Mercury ME21M1

DC-331: The following inorganic soil samples are associated with a solid laboratory control sample (LCS) higher than the EPA control limit indicating a potential positive bias in the sample results. Hits are qualified "J", non-detects are acceptable.

| Reviewed | By:   | J      | . Ga | nz   |  |
|----------|-------|--------|------|------|--|
| Dat      | e : _ | August | 13,  | 2002 |  |

Page 5 of 5

Case Number : 30721

Site Name: Sauget Site H & I

SDG Number: ME21M0 Laboratory: AATS

Sodium ME21M1, ME21M1

#### 5. LABORATORY AND FIELD DUPLICATE

DC-330: The following inorganic samples are associated with duplicate results which did not meet absolute difference criteria.

Hits are qualified "J" and non-detects are qualified "UJ".

Nickel ME21M0, ME21M1

#### 6. ICP ANALYSIS

No problems were found for this qualification.

#### 7. GFAA ANALYSIS

No GFAA analyses were performed for this case.

#### 8. SAMPLE RESULTS

All data, except those qualified above, are acceptable.

Reviewed By: J. Ganz
Date: August 13, 2002

#### CADRE Data Qualifier Sheet

| <u>Oualifiers</u> | Data Qualifier Definitions                                                                                                                                                                                                                                                |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ū                 | The analyte was analyzed for, but was not detected above the reported sample quantitation limit.                                                                                                                                                                          |
| J                 | The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.                                                                                                                                       |
| IJ                | The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the action limit of quantitation necessary to accurately and precisely measure the analyte in the sample. |
| R                 | The data are unusable. (The compound may or may not be present)                                                                                                                                                                                                           |

#### Analytical Results (Qualified Data)

Case #: 30721

SDG: ME21M0

Site

SAUGET SITES H & I

Lab. : Reviewer : AATS J. GANZ

Date:

AUGUST 13, 2002

Number of Soil Samples: 2

Number of Water Samples: 0

| Sample Number :     | ME21M0     |                       | ME21M1     |                     |                                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | T                                         |                            |
|---------------------|------------|-----------------------|------------|---------------------|------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------|----------------------------|
| Sampling Location : | H/WS-02-07 |                       | HMS-02-08  |                     | ł                                  |                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                                           |                            |
| Matrix :            | Soil       |                       | Soil       |                     | }                                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 1                                         |                            |
| Units:              | mg/Kg      |                       | mg/Kg      |                     |                                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | ļ                                         |                            |
| Date Sampled:       | 07/15/2002 |                       | 07/15/2002 |                     | <u> </u>                           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | •                                         |                            |
| Time Sampled :      | 15:32      |                       | 15:32      |                     |                                    | i                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | ì                                         |                            |
| %Solids :           | 78.1       |                       | 92.2       |                     |                                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 1                                         |                            |
| Dilution Factor:    | 1.0        |                       | 1.0        |                     |                                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | <u> </u>                                  | _                          |
| ANALYTE             | Result     | Flag                  | Resuit     | Flag                | Result                             | Flag                        | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Flag                                     | Result                                    | Flag                       |
| ALUMINUM            | 4400       | The Property          | 1810       | N 100 LL 100 THE N  |                                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                           |                            |
| ANTIMONY            | 2.3        | บ้าร์                 | 1.9        | U                   |                                    | ***                         | .12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |                                           |                            |
| ARSENIC             | 17.5       |                       | 6.2        |                     |                                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r removed                                |                                           | 1                          |
| BARIUM              | 3300       |                       | 126        |                     | from to paid                       |                             | in the first                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                           |                            |
| BERYLLIUM           | 0.36       | vivo and drawn        | 0.25       | A. m                | Destruction of the signature       |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                           |                            |
| CADMIUM             | 12.4       |                       | 1.7        |                     | 1                                  |                             | 3 <b>3 3 3</b> 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                           |                            |
| CALCIUM             | 23200      | er . Bar en anderen e | 8950       | 20 1 / 20 MINUTES   | been Productive and Administration |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                           |                            |
| CHROMIUM            | 99.0       |                       | 7.3        |                     |                                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 2 3                                    |                                           |                            |
| COBALT              | 35.9       |                       | 12.4       |                     |                                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                           |                            |
| COPPER              | 287        | ×                     | 602        | 5.50                |                                    | <b>三型</b>                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>34.</b>                               | 10 Sept.                                  |                            |
| IRON                | 81800      | na i secondonica      | 4090       |                     | NAMES OF THE STREET                | e eles, sur la minuscritana | X./andrews                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          | 5 de William (Falla Elleman)              | MATERIAL AND AND AND       |
| LEAD                | ີ່ 648     |                       | 72.6       | - 20                |                                    | OF.                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                           |                            |
| MAGNESIUM           | 1570       | o de desarrol         | 941        | · ×********         | ereasing i the transferra          | cas entre da                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **************                           | VIII.                                     | Ser CHONOLOGIA CON         |
| MANGANESE           | 574        |                       | ÷ 67.6     | -77                 |                                    | 4.316                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2:05                                     | - <del>4</del> - 4 - 4                    |                            |
| MERCURY             | 2.6        | J                     | 0.20       | J                   | NEXT TENNES (IN AN INCIDENCE       | V- +4-74-48-89-             | Produce Security                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | NO THE RESIDENCE SEA FOR WALLY TO SEA FOR | rom in medical             |
| NICKEL              | 2990       | 上遊走                   | 136        | 江湖                  |                                    | 上海型                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                           |                            |
| POTASSIUM           | 513        | · or or in the second | 371        | mont appression     |                                    | 150-1094 WIN                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and a Constitution of                    | Vicini (Pilitari pare di maria)           | Shape in consession of the |
| SELENIUM            | 2,21,2     | J                     | 0.93       | JEE                 |                                    |                             | . 1913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          | 5-06-87 ( 5-                              | E A PASSE                  |
| SILVER              | 1.7        | a decada o            | 0.21       | on or supplemental  | THE CONTRACT OF THE SECOND         | THE PARTY                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | kinin Hessie                             | ner en management en en                   |                            |
| SODIUM              | . 590      | J 📆                   | 539        | Ji.                 |                                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                           | វាភ្លាំ                    |
| THALLIUM            | 4.7        |                       | 0.63       | U<br>Des Connectors | en en en en en en en en en         | SC179678888                 | and the state of t | Depth district                           |                                           | er ku yerko                |
| VANADIUM            | 17.9       |                       | 9.5        |                     |                                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | * # ***                                   |                            |
| ZINC                | 2430       |                       | 704        | ****                | A THE THE PERSON NAMED IN          | ::                          | THE RESTRICTION OF THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AN THE S                                 | on the second second                      | eateac                     |
| CYANIDE             |            | ***                   |            | - 70                |                                    | ***                         | 3040 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 |                                           | ega tetalis.               |

|            |              |                  |                     |                                                  |                                                  |                       |              | Of                  | 'EXCE              | PTION                                            | RUMMA        | RY REP                        | ORT                                              |                                                  |                                                  |              |                                                  |                |              | Page           | •of                     |
|------------|--------------|------------------|---------------------|--------------------------------------------------|--------------------------------------------------|-----------------------|--------------|---------------------|--------------------|--------------------------------------------------|--------------|-------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|----------------|--------------|----------------|-------------------------|
| CASE\SAS   | 5#: 6        | 30               | 121                 |                                                  |                                                  | SITE                  | . 5a         | ugat                | Sit                | e Hi                                             | ZI           | MA                            | TRIX:                                            | 501                                              |                                                  | W            | ATER :                                           | SAMPLE         | SPK:         |                |                         |
| DATA SET   |              |                  |                     |                                                  |                                                  | ***                   | A            | DT                  | 5                  |                                                  | <del></del>  | CO                            | NC.                                              | 100                                              |                                                  |              |                                                  | SAMPLE         |              |                |                         |
|            |              |                  |                     |                                                  |                                                  | LAD:                  |              | V 1 -               | <u> </u>           | <del></del>                                      |              | CO                            |                                                  | 1000                                             |                                                  |              |                                                  |                |              |                |                         |
| LAB QC #   | ¥            | 1 .3             |                     | <del></del>                                      |                                                  | REVI                  | EWED F       | 3Y: <u>-</u>        | 1. 00              | anz                                              |              |                               |                                                  | ·                                                |                                                  | S            | OIL S                                            | ample          | SPK:         |                | <del>"</del>            |
| LAB QC     | Augu         | ST 9             | , 20                | 02                                               |                                                  |                       |              |                     |                    |                                                  |              |                               |                                                  |                                                  |                                                  | S            | OIL S                                            | AMPLE          | DUP:         |                |                         |
| FORM /     |              | FORM 3           | FORM 3              | FORM 3                                           | FORM 3                                           | FORM 3                | FORM 4       | FORM 5              | FORM 6             | FORM 7                                           | FORM 7       | FORM 9                        | FORM 9                                           | FORM 6                                           | FORM 5                                           | FIELD        | FELD                                             | FIELD          | FELD         |                |                         |
| ELEMENT    | HOLD<br>TIMB | INITIAL<br>CALIB | CONTI<br>N<br>CALIB | CALIB<br>BLANK                                   | PREP<br>WATER<br>BLANK                           | PREP<br>SOIL<br>BLANK | ICB<br>%R    | SOIL<br>SPIKE<br>WR | BOIL<br>DUP<br>RPD | LCB<br>AQ                                        | LCS<br>BOIL  | SERIAL<br>DILUTION<br>AQUEOUS | SERIAL<br>DILUTION<br>SOIL                       | AQ DUP<br>RPD                                    | AQ<br>BPIKE<br>WE                                | BLANK        | DUP<br>RPD                                       | BLANK          | DUP<br>RPD   | CFAA<br>DUP    | GFAA<br>ANALIT<br>BPIKE |
| ALUMINUM   |              |                  |                     |                                                  |                                                  |                       |              |                     |                    |                                                  |              |                               |                                                  |                                                  |                                                  |              |                                                  | <u></u>        |              |                |                         |
| ANTEMONT   |              |                  |                     |                                                  |                                                  |                       |              |                     |                    |                                                  |              |                               |                                                  | ļ                                                |                                                  |              | ļ                                                |                |              |                |                         |
| ARSENE     |              |                  |                     |                                                  |                                                  |                       |              |                     |                    |                                                  |              |                               | ļ                                                |                                                  |                                                  |              | ļ                                                | ļ              | ļ            |                |                         |
| элиплі     | ļ            | ļ. <u></u> .     | ļ                   |                                                  | <u> </u>                                         | <u> </u>              |              |                     | ļ                  | ļ                                                |              | ļ <u>.</u>                    |                                                  |                                                  |                                                  | ļ            | ļ                                                | \              | <u> </u>     | <u> </u>       |                         |
| DERYLL RAM |              |                  |                     |                                                  | ļ                                                | ļ                     | <u> </u>     |                     |                    |                                                  |              |                               |                                                  | ļ                                                | ļ                                                | ļ            | <u> </u>                                         | <u></u>        |              | ļ              | <u> </u>                |
| САВМИЛ     | ļ            | ļ                | ļ                   | ļ                                                | <u> </u>                                         | <u> </u>              |              |                     | ļ                  | ļ                                                | ļ            |                               |                                                  | <u> </u>                                         |                                                  |              |                                                  | ļ              |              | <u> </u>       | ļ                       |
| CALCIUM    |              | ļ                | ļ                   | ļ                                                |                                                  | ļ                     |              |                     |                    |                                                  |              | ļ                             | ļ <del>.</del>                                   |                                                  |                                                  | ļ            | ļ                                                | ļ              | ļ            | <u> </u>       |                         |
| CHROMIUM   | <del> </del> | ļ <u>.</u>       | ·                   | ļ                                                | ļ                                                | ļ                     |              |                     | ļ                  | <u> </u>                                         | <u> </u>     |                               | ļ                                                | <u> </u>                                         | ļ                                                | ļ            | ļ                                                | ļ <u>.</u>     | ļ            | <b></b> _      | ļ                       |
| COBALT     | ļ            | <u> </u>         | <u> </u>            |                                                  |                                                  |                       | ļ            |                     | ļ                  | ļ                                                | ļ            |                               | ļ                                                | <u> </u>                                         | ļ                                                | ļ            | <b></b>                                          | <u> </u>       | <u> </u>     | <b></b>        |                         |
| COPPER     | -            |                  | ļ                   | ļ                                                | -                                                | ļ                     | ļ            | ļ                   | ļ                  |                                                  |              |                               | <del> </del>                                     | ļ                                                | ļ                                                |              | ļ                                                | ļ              | <del> </del> | <del> </del> - | ļ                       |
| INON       |              | ļ                | <u> </u>            | ļ                                                | <b> </b>                                         | <del> </del>          | <u> </u>     |                     | ļ                  | <u> </u>                                         | ļ            | <del> </del>                  | <b></b>                                          | ļ                                                | ļ                                                | <u> </u>     | ļ                                                | ļ              | <u> </u>     | <b></b>        | ļ                       |
| DAS.1      |              |                  | ļ ·                 | ļ                                                | ļ                                                | ļ                     | ļ            |                     | <b> </b>           | <u> </u>                                         | <u> </u>     | <u> </u>                      | <u> </u>                                         | ļ                                                | ļ                                                |              |                                                  | <del> </del>   | ļ            | <del> </del>   | ļ <u></u>               |
| MAGNESTUM  | <b></b>      | ļ                | <del> </del>        | <del> </del>                                     | <del> </del>                                     | ļ                     | 1.77.3       | <del> </del>        | ļ                  |                                                  | <del> </del> |                               | <del> </del>                                     |                                                  | <del> </del>                                     | <u> </u>     | <del> </del>                                     | <del> </del> - | <del> </del> | <del> </del>   | ļ                       |
| MANGANESE  |              |                  |                     | 1                                                | <del>                                     </del> | <del> </del>          | 26(A)        | ļ                   | <del> </del> -     | ļ                                                | <del> </del> | <b> </b>                      | <del> </del>                                     | ļ                                                | <del> </del>                                     |              | <del> </del>                                     | <del> </del>   | <del>-</del> |                | <u> </u>                |
| MERCURY    |              | ·                | ļ                   | -0.1                                             | ļ                                                | <del> </del> -        | ļ            | 1 7                 | 1 1 00             | <u> </u>                                         | <del></del>  | <del> </del> -                | <u> </u>                                         |                                                  | -                                                |              | <del> </del>                                     |                | -            | ├              | <del> </del>            |
| NR REL     |              | <u> </u>         | ┼                   |                                                  | <del> </del>                                     | <del> </del>          | <del> </del> | 71.5                | ) JANCE            | 1/_                                              | <del> </del> | <del> </del>                  | ļ                                                | <del> </del>                                     |                                                  | <del> </del> | <del> </del>                                     | <del> </del> - | <del> </del> | <del> </del>   | <del> </del> -          |
| POTABBRIM  | <del></del>  |                  | <del> </del>        |                                                  | -                                                | <del></del>           | <del></del>  | F-7 1               | <del> </del>       | <del> </del>                                     |              | <del></del>                   | <del></del>                                      | <del> </del>                                     | <del> </del>                                     | <del> </del> | <del> </del>                                     | -              | -            | ┼              | <del> </del>            |
| SELENII/M  | <del>-</del> | <del> </del>     | <del> </del> -      | <del>                                     </del> | <del> </del>                                     | <del></del> -         |              | 57.4                |                    | <del> </del>                                     | <del> </del> | <del> </del>                  |                                                  | <del> </del>                                     | <del> </del>                                     | ·            | <del> </del>                                     | <del> </del>   | <del> </del> | <del> </del>   | <u> </u>                |
| BRIVER     | <del>-</del> | <u> </u>         | <del> </del>        | <del> </del>                                     | <del></del>                                      | <del> </del>          | <del> </del> |                     | -                  |                                                  | 2011-        | ,                             | ļ                                                | <del> </del>                                     | <del> </del>                                     | <del> </del> | -                                                | ļ              | <del> </del> | <del> </del>   | <del> </del> -          |
| BOURDM     |              | <del></del>      | ļ                   | <del> </del>                                     | <del> </del>                                     | <del> </del>          |              | <del> </del>        | <del> </del>       | <del> </del>                                     | 3047         |                               | <del>                                     </del> |                                                  | <del>                                     </del> | <del>-</del> | <del> </del>                                     | <del> </del>   | <del> </del> | <del> </del>   | <del> </del> -          |
| TRALLIUM   |              | <del> </del>     | <u> </u>            | -3.1                                             | <del> </del>                                     | <del> </del>          | <del> </del> | <del> </del>        | <del> </del>       |                                                  | 1            |                               | <del> </del>                                     | <del> </del>                                     | <del> </del>                                     | ļ            | <del> </del>                                     | <del> </del>   | <del> </del> | <del> </del>   | <del> </del>            |
| 1 IN       |              | <del> </del>     | · <del> </del>      | <del> </del>                                     | <del> </del>                                     | <del> </del>          |              | <del> </del>        | <del> </del>       |                                                  |              |                               | <del> </del>                                     | <del> </del>                                     | <del>                                     </del> | <del> </del> | <del> </del>                                     | <del> </del>   | <del> </del> | <del> </del>   | <del> </del>            |
| VANADR/M   |              | <del> </del>     | <del> </del>        | <del> </del>                                     | <del> </del>                                     | <del> </del>          | <del> </del> | ├                   | <del> </del>       | <del> </del>                                     | <del> </del> |                               | <del>                                     </del> | <del>                                     </del> | <del>                                     </del> | -            | <del> </del>                                     | <del> </del>   | <del> </del> | <del> </del>   | <del> </del>            |
| Z.U+C      | <del></del>  |                  |                     | <del> </del>                                     | <del> </del>                                     | <del> </del>          |              | <del> </del>        | <del> </del>       | <del>                                     </del> | <del> </del> | <del> </del>                  | <del> </del>                                     | <del> </del>                                     | <del> </del>                                     | <del> </del> | <del>                                     </del> | <del> </del> - | <del> </del> |                | ļ                       |
| CTANIDE    | 1            | ı                | 1                   | ľ                                                | 1                                                | 1                     | 1            | 1                   | 1                  |                                                  | 1            | 1                             | 1                                                | 1                                                |                                                  | 1            | 1                                                | ı              | ı            | I              | J                       |

ity i (1) - veron sample for no reason ( top & apk would have been out)

| 8 | E | PA |
|---|---|----|
|   |   |    |

# **USEPA Contract Laboratory Program Inorganic Traffic Report & Chain of Custody Record**

| Case No: | 30721  |   |
|----------|--------|---|
| DAS No:  |        | 1 |
| SDG No:  | MENING |   |

|                                              |                               |                                    | 111602/1110              |
|----------------------------------------------|-------------------------------|------------------------------------|--------------------------|
| Date Shipped: 7/16/2002                      | Chain of Custody Record       | Sampler<br>Signature: Mis Religion | For Lab Use Only         |
| Carrier Name: FedEx                          | Relinquished By (Date / Time) | Received By (Date / Time)          | Lab Contract No: 6868086 |
| Airbill: 827673148913                        | 1 arrie lesta 7/16/02/200     | TP                                 | \$ 111.00                |
| Shipped to: American Analytical &            | 1 Urre leta 7/16/21 dois      | B. Take 7/17/02 W:15               | Unit Price: 7/4.73       |
| Technical Services, Inc.<br>1700 West Albany | 2                             |                                    | Transfer To:             |
| Suite C Broken Arrow OK 74012                | 3                             | }                                  | Lab Contract No:         |
| (918) 251-0545                               | 4                             |                                    | Unit Price:              |

| INORGANIC<br>SAMPLE No. | MATRIX/<br>SAMPLER                     | CONC/<br>TYPE | ANALYSIS/<br>TURNAROUND | TAG No./<br>PRESERVATIVE | STATION<br>LOCATION |    | SAMPLE CO<br>DATE/T |       | ORGANIC<br>SAMPLE No. | FOR LAB USE ONLY<br>Sample Condition On Receipt |
|-------------------------|----------------------------------------|---------------|-------------------------|--------------------------|---------------------|----|---------------------|-------|-----------------------|-------------------------------------------------|
| ME21L7                  | Soil/Sediment/<br>Mechelle<br>Anderson | M/G           | TM (7)                  | 598854 (Ice Only) (1)    | H/WS-01-04          | S: | 7/15/2002           | 14:10 | E21L7                 | oK                                              |
| ME21L8                  | Soil/Sediment/<br>Mechelle<br>Anderson | M/G           | TM (7)                  | 598858 (Ice Only) (1)    | H/WS-01-05          | S: | 7/15/2002           | 14:25 | E21L8                 |                                                 |
| ME21L9                  | Soil/Sediment/<br>Mechelle<br>Anderson | M/G           | <b>TM</b> (7)           | 598862 (Ice Only) (1)    | H/WS-02-06          | S: | 7/15/2002           | 15:32 | E21L9                 |                                                 |
| ME21M0                  | Soil/Sediment/<br>Mechelle<br>Anderson | M/G           | TM (7)                  | 598866 (Ice Only) (1)    | H/WS-02-07          | S: | 7/15/2002           | 15:32 | E21M0                 |                                                 |
| ME21M1                  | Soil/Sediment/<br>Mechelle<br>Anderson | M/G           | TM (7)                  | 598870 (Ice Only) (1)    | H/WS-02-08          | S: | 7/15/2002           | 15:32 | E21M1                 | V                                               |

| COPY | ORIGINAL DOCUMENTS ARE INCLUDED  CSF 30721 SDG ME21K  Signature 1/22/03- |  |
|------|--------------------------------------------------------------------------|--|
|------|--------------------------------------------------------------------------|--|

| Shipment for Case<br>Complete?N | Sample(s) to be used for laboratory QC:       | Additional Sampler Signature(s):        | Cooler Temperature<br>Upon Receipt:<br>· 6,22 | Chain of Custody Seal Number: 87/12/87/23 |
|---------------------------------|-----------------------------------------------|-----------------------------------------|-----------------------------------------------|-------------------------------------------|
| Analysis Key:                   | Concentration: L = Low, M = Low/Medium, H = H | ligh Type/Designate:Composite = C, Grab | = G                                           | Custody Seal Intact? Y Shipment Iced? Y   |
| TM = CLP TAL Total Med          | tals                                          |                                         |                                               |                                           |

**TR Number: 5-343595582-071602-0003** 

LABORATORY COPY

PR provides preliminary results. Requests for preliminary results will increase analytical costs.
Send Copy to: Contract Laboratory Analytical Services Support, 2000 Edmund Halley Dr., Reston, VA. 20191-3436 Phone 703/264-9348 Fax 703/264-9222

#### AMERICAN ANALYTICAL & TECHNICAL SERVICES, INC

1700 West Albany / Broken Arrow, Oklahoma 74012 / Office (918) 251-2858 / Fax (918) 251-2599

JUL 2 4 2002

#### **SDG NARRATIVE**

**CONTRACT: 68W00086** 

CASE: 30721 SDG: ME21M0 DATE: July 23, 2002 SOW NO.: ILM04.1 EPISODE NO.: 50290

#### **INORGANIC METAL FRACTION:**

Two soil samples were submitted for ICP, and Hg analysis. No major problems occurred during the digestion or analyses of these samples. The cooler temperature at time of receipt was at 6.2° Celsius. The cooler temperature indicator bottle was present. Sample tags were present. No QC was designated by the sampler. See attached e-mail for correspondence. The sample's analyses were completed according to the following:

| SWL SOP#   | Method SOP is based                         |
|------------|---------------------------------------------|
| SWL-IN-200 | ILM03.0/04.0 (ICP digestion & analysis)     |
| SWL-IN-202 | ILM03.0/04.0 (analysis of Hg by cold vapor) |

Initial and Continuing Calibration Checks: No problems

Initial and Continuing Calibration Blanks: The following elements showed low level concentrations below the Contract Required Detection Limit in the Calibration Blank: Hg, Tl, Zn.

No action required.

Linearity near the CRDL (CRA & CRI): The CRI standard was outside of our in house warning limits of 70-130%R for the following elements: Hg. No action required.

Preparation Blank: The following elements showed low level concentrations below the Contract Required Detection Limit in the Preparation Blank: Se, Zn. No action required.

Lab Control Spikes: No problems.

Matrix Spikes: The following elements were outside the control limits of 75-125% recovery: Ni. Se.

All associated samples were flagged with a "N" on Form I's.

**Duplicate(s):** The following elements were outside the control limits of 0-20% RPD: Fe, Mn, Ni, Zn.

All associated samples were flagged with a "\*" on Form I's.

### AMERICAN ANALYTICAL & TECHNICAL SERVICES, INC

1700 West Albany / Broken Arrow. Oklahoma 74012 / Office (918) 251-2858 / Fax (918) 251-2599

Serial Dilution (ICP): The soil serial dilution was outside the control limits of 10% for the following elements: none.

No action required.

Sincerely,

Steve Markham

Operations Manager

#### COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

| Lab :                    | Name:                                | AMERI                               | CAN_ANAL                                            | YTICAL_                                      | AND_T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Contract:                                           | 68M00086                  |                                                                   |               |
|--------------------------|--------------------------------------|-------------------------------------|-----------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------|-------------------------------------------------------------------|---------------|
| Lab                      | Code:                                | AATS_                               | Case                                                | No.:                                         | 30721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SAS No.:                                            |                           | SDG No.:M                                                         | E21M0         |
| SOW                      | No.:                                 | ILMO4.                              | 2/ 7/25/02                                          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                           |                                                                   |               |
|                          |                                      |                                     | EPA Sampl<br>ME21M0<br>ME21M1<br>ME21M1D<br>ME21M1S | <del></del>                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lab Sam<br>_50290.<br>_50290.<br>_50290.<br>_50290. | 01                        |                                                                   |               |
|                          |                                      |                                     |                                                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                           |                                                                   |               |
|                          |                                      |                                     |                                                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                           |                                                                   |               |
|                          |                                      |                                     |                                                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                   |                           |                                                                   |               |
|                          |                                      |                                     |                                                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                           |                                                                   |               |
|                          |                                      |                                     |                                                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                           |                                                                   |               |
|                          |                                      |                                     |                                                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                           |                                                                   |               |
| Were                     | ICP :                                | intere                              | element co                                          | rrection                                     | ons appl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ied ?                                               |                           | Yes/No                                                            | YES           |
| Were                     |                                      |                                     | ound corr                                           |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                           | Yes/No                                                            | YES           |
|                          | appl                                 | icatio                              | n of back                                           | ground                                       | correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ions ?                                              |                           | Yes/No                                                            | ио_           |
| Comm                     | ents:                                |                                     |                                                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | •                         |                                                                   |               |
|                          |                                      |                                     |                                                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                           |                                                                   |               |
|                          |                                      |                                     |                                                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                           |                                                                   |               |
|                          |                                      |                                     | <del></del>                                         | <del></del>                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                           | <del></del>                                                       | · <del></del> |
| cond:<br>othe:<br>in the | itions<br>r than<br>his ha<br>iskett | s of t<br>n the<br>ardcop<br>te has | he contra<br>condition<br>y data pa<br>been aut     | ict, bot<br>is detai<br>ickage a<br>thorized | h techniled about the indicate in the indicate | ically and ve. Release to the computer Laborator    | d for compl<br>ase of the | e terms and<br>leteness, f<br>data conta<br>e data subm<br>or the | ined          |
| Sign                     | ature                                | : X                                 | to Z. M.                                            | ella                                         | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Name:                                               | Steve L. M                | Markham                                                           |               |
| Date                     | :                                    |                                     | 07/83/0                                             | ત્ર                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Title:                                              | Operations                | Manager                                                           |               |
|                          |                                      |                                     |                                                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                           |                                                                   |               |

COVER PAGE - IN

# INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO.

| Lab Name: AMER | ICAN_ANALYT                                           | ICAL_AND_T            | Contract: 6        | 8 <b>W</b> 00086 | ME21MO                                |             |  |  |  |  |  |
|----------------|-------------------------------------------------------|-----------------------|--------------------|------------------|---------------------------------------|-------------|--|--|--|--|--|
| Lab Code: AATS | Ca                                                    | se No.: 30            | 721_ SAS No.       | :                | SDG No.:                              | ME21M0      |  |  |  |  |  |
| Matrix (soil/w | ater): SOIL                                           | <del></del>           |                    | Lab Samp         | le ID: 5029                           | 0.01        |  |  |  |  |  |
| Level (low/med | l): LOW                                               |                       |                    | Date Rec         | eived: 07/1                           | 7/02        |  |  |  |  |  |
| % Solids:      |                                                       | ,                     |                    |                  |                                       |             |  |  |  |  |  |
|                |                                                       |                       |                    |                  |                                       |             |  |  |  |  |  |
| Co             | Concentration Units (ug/L or mg/kg dry weight): MG/KG |                       |                    |                  |                                       |             |  |  |  |  |  |
|                | CAS No.                                               | ·                     | Concentration 4400 |                  | M<br>P                                |             |  |  |  |  |  |
| •              | 7440-36-0                                             | Antimony_             | 2.3                | U                | P P                                   |             |  |  |  |  |  |
|                | 7440-38-2<br>7440-39-3                                | Arsenic<br>Barium     | 17.5<br>3300       |                  | P_                                    |             |  |  |  |  |  |
|                | 7440-41-7                                             | Beryllium             | 0.36               | B                | P_<br>P_<br>P_<br>P_<br>P_            |             |  |  |  |  |  |
|                | 7440-43-9<br>7440-70-2                                | Cadmium               | 12.4               |                  | P_                                    |             |  |  |  |  |  |
|                | 7440-47-3                                             | Chromium              | 99.0               | -                | P-                                    |             |  |  |  |  |  |
|                | 7440-48-4                                             | Cobalt                | 35.9               |                  | P P                                   |             |  |  |  |  |  |
|                | 7440-50-8<br>7439-89-6                                | Copper                | 267<br>81800       | -   <del></del>  | P                                     |             |  |  |  |  |  |
|                | 7439-09-0                                             | Iron<br>Lead          | 648                |                  | <del> </del>                          |             |  |  |  |  |  |
|                | 7439-95-4                                             | Magnesium             | 1570               | -                | p   p   p   p   p   p   p   p   p   p |             |  |  |  |  |  |
|                | 7439-96-5                                             | Manganese             | 574                | _ *              | P                                     |             |  |  |  |  |  |
|                | 7439-97-6<br>7440-02-0                                | Mercury<br>Nickel     | 2.6<br>2990        | - N*             | Ç⊽                                    |             |  |  |  |  |  |
|                | 7440-02-0                                             | Potassium             | 513                | B                | P_<br>P_<br>P_<br>P_                  |             |  |  |  |  |  |
|                | 7782-49-2                                             | Selenium              | 1.2 1.0            | UB N             | P 94                                  |             |  |  |  |  |  |
|                | 7440-22-4                                             |                       | 1.7                | В                | P                                     |             |  |  |  |  |  |
|                | 7440-23-5                                             | Sodium_               | 590                | В                | P_                                    |             |  |  |  |  |  |
|                | 7440-28-0<br>7440-62-2                                | Thallium_<br>Vanadium | 17.9               | _                | P_<br>P_                              |             |  |  |  |  |  |
|                | 7440-66-6                                             | Zinc                  | 2430               |                  | P-                                    |             |  |  |  |  |  |
|                |                                                       | Cyanide               |                    |                  | NR                                    |             |  |  |  |  |  |
|                |                                                       |                       |                    | _                |                                       |             |  |  |  |  |  |
| Color Before:  | BROWN                                                 | Clarit                | cy Before:         |                  | Texture:                              | MEDIUM      |  |  |  |  |  |
| Color After:   | YELLOW                                                | Clarit                | y After: CLEA      | R_               | Artifacts:                            |             |  |  |  |  |  |
| Comments:      |                                                       |                       |                    |                  |                                       |             |  |  |  |  |  |
|                |                                                       |                       |                    |                  |                                       |             |  |  |  |  |  |
|                |                                                       |                       |                    |                  |                                       | <del></del> |  |  |  |  |  |

FORM I - IN

EPA SAMPLE NO

|             |             |                                                                                                                                                                           | INORGANIC .                                                                                                                                                     | ANALYSES DATA                                                                           | SHEET            |             |        |
|-------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------|-------------|--------|
| Lab Name    | e: AMERI    | CAN_ANALYT                                                                                                                                                                | ICAL_AND_T                                                                                                                                                      | Contract: 6                                                                             | 8 <b>W</b> 00086 | ME21M1      |        |
| Lab Code    | e: AATS_    | Ca                                                                                                                                                                        | se No.: 30                                                                                                                                                      | 721_ SAS No.                                                                            | :                | SDG No.:    | ME21M0 |
| Matrix (    | (soil/wa    | ter): SOIL                                                                                                                                                                | ·<br>                                                                                                                                                           |                                                                                         | Lab Samp         | le ID: 5029 | 0.02   |
| Level (1    | low/med)    | : LOW_                                                                                                                                                                    |                                                                                                                                                                 |                                                                                         | Date Rece        | eived: 07/1 | 7/02   |
| % Solids    | <b>3</b> :  | _92.                                                                                                                                                                      | 2 .                                                                                                                                                             |                                                                                         |                  |             |        |
|             | Con         | centration                                                                                                                                                                | Units (ug                                                                                                                                                       | /L or mg/kg dr                                                                          | y weight)        | : MG/KG     | ·      |
|             |             | CAS No.                                                                                                                                                                   | Analyte                                                                                                                                                         | Concentration                                                                           | C Q              | м           |        |
|             |             | 7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-48-4 7440-50-8 7439-95-4 7439-95-4 7439-96-5 7440-02-0 7440-02-0 7440-23-5 7440-23-5 7440-66-6 | Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium | 1.7<br>8950<br>7.3<br>12.4<br>60.2<br>4090<br>72.6<br>941<br>67.6<br>0.20<br>136<br>371 | B                |             |        |
| Color Be    | fore:       | BROWN                                                                                                                                                                     | Clarit                                                                                                                                                          | y Before:                                                                               | <del></del>      | Texture:    | COARSE |
| Color Af    | ter:        | YELLOW                                                                                                                                                                    | Clarit                                                                                                                                                          | y After: CLEA                                                                           | AR_              | Artifacts:  |        |
| Comments    | :           |                                                                                                                                                                           |                                                                                                                                                                 |                                                                                         |                  |             |        |
|             |             |                                                                                                                                                                           | · · · · · · · · · · · · · · · · · · ·                                                                                                                           | <del></del>                                                                             |                  |             |        |
| <del></del> | <del></del> |                                                                                                                                                                           | <del></del>                                                                                                                                                     | <del> </del>                                                                            | <del> </del>     |             |        |

FORM I - IN

## 3 BLANKS

Lab Name: AMERICAN\_ANALYTICAL\_AND\_T Contract: 68W00086\_\_

Lab Code: AATS\_\_ Case No.: 30721\_ SAS No.: \_\_\_\_ SDG No.: ME21M0

Preparation Blank Matrix (soil/water): SOIL\_

Preparation Blank Concentration Units (ug/L or mg/kg): MG/KG

| Analyte                                                                                                                                                                                        | Initial<br>Calib.<br>Blank<br>(ug/L) C                                                                                                                  | Continuing Calibration Blank (ug/L) C 2 C 3 C | Prepa-<br>ration<br>Blank C M                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide | 54.0 U 9.0 U 9.0 U 4.0 U 10.0 U 1.0 U 1.0 U 349.0 U 2.0 U 5.0 U 2.0 U 27.0 U 27.0 U 1.0 U 406.0 U 1.0 U 382.0 U 3.0 U 3.0 U 470.0 U 470.0 U 4.0 U 4.0 U | S4.0                                          | 10.80 U P 1.80 U P 0.80 U P 0.80 U P 0.80 U P 0.20 U P 0.20 U P 69.80 U P 0.40 U P 1.00 U P 0.40 U P 0.40 U P 0.40 U P 0.20 U P 0.60 U P |

FORM III - IN

#### 3 BLANKS

| Lab Name:  | AMERICAN | N_ANALYTICAI | L_AND_T        | Contract:   | 68W00086 |        |        |
|------------|----------|--------------|----------------|-------------|----------|--------|--------|
| Lab Code:  | AATS     | Case         | No.: 30721_    | SAS No.:    | SD       | G No.: | ME21M0 |
| Preparatio | on Blank | Matrix (so   | il/water):     |             |          |        |        |
| Drenaratio | on Blank | Concentrati  | ion Unita (ua/ | T. or ma/ka | ١.       |        |        |

|                                         | Initial         |    |                  |    | · · · · · ·  |                    |   |      | T  |                  |                       | T         |
|-----------------------------------------|-----------------|----|------------------|----|--------------|--------------------|---|------|----|------------------|-----------------------|-----------|
| • • • • • • • • • • • • • • • • • • • • | Calib.<br>Blank | _  |                  | B. | iing<br>Lank | Calib:             | ) |      |    | Prepa-<br>ration |                       |           |
| Analyte                                 | (ug/L)          | C  | 1                | C  |              | 2                  | C | 3    | C  | Blank            | C                     | М         |
| Aluminum                                |                 |    |                  |    |              | <del></del>        |   |      |    |                  | $\lceil \cdot \rceil$ | NR        |
| Antimony_                               |                 |    |                  | _  |              |                    |   |      |    |                  |                       | NR_       |
| Arsenic<br>Barium                       |                 | -  |                  | -  |              |                    | - |      | -  |                  | -                     | NR_<br>NR |
| Beryllium                               |                 | -  |                  | _  |              |                    | - |      | -  |                  |                       | NR        |
| Cadmium                                 |                 |    |                  |    |              |                    |   |      |    |                  |                       | NR_       |
| CalciumChromium                         |                 | -  |                  | _  |              |                    | - |      | -  |                  | -1                    | NR_<br>NR |
| Cobalt                                  |                 |    |                  | _  |              |                    |   |      |    |                  |                       | NR_       |
| Copper                                  |                 | ਹ  | 7.0              | Ū  |              | 7.0                | Ū | 7.0  | Ū  |                  | -                     | NR_<br>P  |
| IronLead                                | 7.0             | ال |                  | U  |              | _/.0_              | ٦ |      | ١٧ |                  | -                     | NR        |
| Magnesium                               |                 |    |                  |    |              |                    |   |      |    |                  |                       | NR T      |
| Manganese                               |                 | _  | -0.1             | B  |              | 0.1                | Ū | 0.1  | ਹ  |                  | -                     | NR_<br>CV |
| Mercury<br>Nickel                       | 1.0             | ਰ  | <sup>1</sup> .0- | Ü  |              | -1: <del>5</del> - | ם | 1.0- | ŭ  | <del></del>      | -                     | P'-       |
| Potassium                               |                 | _  |                  | _  |              |                    | _ |      |    |                  |                       | NR_       |
| Selenium_<br>Silver                     |                 | _  |                  | _  |              | <del></del>        | _ |      | -  |                  | -                     | NR_<br>NR |
| Sodium                                  |                 | -  |                  | -  |              |                    | - |      | -  |                  | -1                    | NR-       |
| Thallium                                |                 | _  |                  | _  |              |                    | _ |      |    |                  |                       | NR        |
| Vanadium_<br>Zinc                       |                 | _  |                  | _  |              | ·                  | _ |      | -  |                  | -                     | NR_<br>NR |
| Cyanide                                 |                 | -  | <del></del>      | -  |              |                    | - |      | -  |                  | -                     | NR-       |
|                                         |                 |    |                  | _  |              |                    | _ |      |    |                  |                       |           |

FORM III - IN

#### 5A SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

|     |       |                           |                   | ME21M1S |
|-----|-------|---------------------------|-------------------|---------|
| Lab | Name: | AMERICAN_ANALYTICAL_AND_T | Contract: 68W0008 | 5)      |

Lab Code: AATS\_\_ Case No.: 30721\_ SAS No.: \_\_\_\_ SDG No.: ME21MO

Matrix (soil/water): SOIL\_\_\_ Level (low/med): LOW\_\_\_

% Solids for Sample: \_92.2

Concentration Units (ug/L or mg/kg dry weight): MG/KG

| Analyte   | Control<br>Limit<br>%R | Spiked Sample<br>Result (SSR) | С  | Sample<br>Result (SR) | С  | Spike<br>Added (SA) | %R    | Q | М  |
|-----------|------------------------|-------------------------------|----|-----------------------|----|---------------------|-------|---|----|
| Aluminum  |                        |                               |    | <del></del>           | Г  | <del></del>         |       | - | NR |
| Antimony_ | 75-125                 | 93.6461                       | _  | 1.8954                | Ū  | 105.30              | 88.9  | - | P  |
| Arsenic   | 75-125                 | 15.0012                       |    | 6.1567                | 1  | 8.42                | 105.0 | - | P_ |
| Barium    | 75-125                 | 535.4645                      |    | 125.8853              | _  | 421.20              | 97.2  | _ | P_ |
| Beryllium | 75-125                 | 10.7754                       | _  | 0.2464                | B  | 10.53               | 100.0 | _ | P_ |
| Cadmium   | 75-125                 | 11.8426                       | _  | 1.7238                | 1  | 10.53               | 96.1  | _ | P_ |
| Calcium_  |                        |                               | _  |                       | _  |                     |       | _ | NR |
| Chromium_ | 75-125                 | 49.1111                       | _  | 7.2660                | _  | 42.12               | 99.3  | - | P  |
| Cobalt    | 75-125                 | 113.3578                      |    | 12.4259               |    | 105.30              | 95.9  | - | P_ |
| Copper    | 75~125                 | 119.5268                      |    | 60.2093               | -  | 52.65               | 112.7 | _ | P_ |
| Iron      |                        |                               | _  |                       |    |                     |       | _ | NR |
| Lead      |                        | 80.9195                       | _  | 72.6180               | 1_ | 4.21                | 197.2 | _ | P  |
| Magnesium |                        |                               | _  |                       |    |                     |       | _ | NR |
| Manganese | 75-125_                | 156.3313                      | _  | 67.6339               |    | 105.30              | 84.2  |   | P  |
| Mercury   | 75-125                 | 0.6941                        |    | 0.1985                |    | 0.54                | 91.8  |   | C₹ |
| Nickel    | 75-125                 | 134.1345                      | _  | <u>13</u> 5.7269      |    | 105.30              | -1.5  | N | P  |
| Potassium |                        |                               | _  |                       |    |                     |       | _ | NR |
| Selenium_ | 75-125_                | 2.1435                        | _  | 0.9328                | B  | 2.11                | 57.4  | N | P_ |
| Silver    | 75-125_                | 10.8812                       | _[ | 0.2142                | В  | 10.53               | 101.3 | _ | P_ |
| Sodium    |                        |                               | _[ |                       |    |                     |       |   | NR |
| Thallium_ | 75-125                 | 10.2660                       | _  | 0.6318                | Ū  | 10.53               | 97.5  |   | P_ |
| Vanadium_ | 75-125                 | 113.4751                      |    | 9.5295                | В  | 105.30              | 98.7  |   | P_ |
| Zinc      |                        | 676.2848                      | _  | 704.4357              |    | 105.30              | 26.7  |   | P_ |
| Cyanide   |                        |                               | _  |                       |    |                     |       |   | NR |
|           |                        |                               | _  |                       |    |                     |       |   | 1  |

| Comment | s: |      |                                       |      |
|---------|----|------|---------------------------------------|------|
|         |    | <br> | <br>                                  | <br> |
|         |    |      | · · · · · · · · · · · · · · · · · · · | <br> |

FORM V (Part 1) - IN

### 5B POST DIGEST SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

|           |              | TOOL DIGEO   |         | MATERIA RECOV | O1/ 1 | ( <del></del> , |
|-----------|--------------|--------------|---------|---------------|-------|-----------------|
| Lab Name: | AMERICAN_ANA | ALYTICAL_AND | _T Cont | ract: 68W00   | 086   | ME21M1A         |
| Lab Code: | AATS         | Case No.:    | 30721_  | SAS No.:      |       | SDG No.: ME21M0 |
| Matrix (s | oil/water) : | SOIL         |         |               | Level | (low/med): LOW  |

Concentration Units: ug/L

| Analyte                                                                     | Control<br>Limit<br>%R | Spiked Sample<br>Result (SSR) | С | Sample<br>Result (SR) | С        | Added | (SA) | <b>%</b> R | Q       | М                                     |
|-----------------------------------------------------------------------------|------------------------|-------------------------------|---|-----------------------|----------|-------|------|------------|---------|---------------------------------------|
| Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt  |                        |                               |   |                       | 111111   |       |      |            | 1111111 | RESERVE SERVE                         |
| CopperIron Lead                                                             |                        | 2010.95                       |   | 644.47_               | 1111111  |       | 00.0 | 105.1      |         | NR NR NR P R                          |
| Selenium_<br>Silver<br>Sodium<br>Thallium_<br>Vanadium_<br>Zinc_<br>Cyanide |                        | 13.26                         |   | 4.43                  | <u> </u> |       | 10.0 | 88.3       |         | P<br>NR<br>NR<br>NR<br>NR<br>NR<br>NR |

| Comments: |  |  |
|-----------|--|--|
|           |  |  |
|           |  |  |

FORM V (Part 2) - IN

#### 6 DUPLICATES

EPA SAMPLE NO.

Lab Name: AMERICAN\_ANALYTICAL\_AND\_T Contract: 68W00086\_\_ | ME21M1D

Lab Code: AATS\_\_ Case No.: 30721\_ SAS No.: \_\_\_\_ SDG No.: ME21M0

Matrix (soil/water): SOIL\_ Level (low/med): Low\_

Concentration Units (ug/L or mg/kg dry weight): MG/KG

| Analyte               | Control<br>Limit | Sample (S)            |      | Duplicate (D)       | С         | RPD          | Q            | М                 |
|-----------------------|------------------|-----------------------|------|---------------------|-----------|--------------|--------------|-------------------|
| Aluminum_<br>Antimony |                  | 1813.8892<br>1.8954 Ū |      | 1499.0746<br>1.8954 | 0         | 19.0_        | -            | P<br>P            |
| Arsenic               | 2.1060           | 6.1567                |      | 6.0335              |           | 2.0          | 1-           | P_                |
| Barium                | 42.1203          | 125.8853              | 11   | 105.0683            | 1-1       | 18.0         |              | P_1               |
| Beryllium             |                  | 0.2464 B              |      | 0.2409              | B         | 2.3          | 1-           | P_                |
| Cadmium               | 1.0530           | 1.7238                |      | 1.1598              | 1_1       | 39.1         |              | P_                |
| Calcium               |                  | 8950.9511             | .    | 7389.5411           |           | 19.1         |              | P_                |
| Chromium_             | 2.1060           | 7.2660                | .]]  | 7.0238              |           | 3.4          |              | P_                |
| Cobalt                | 10.5301          | 12.4259               | . 11 | 11.2072             |           | 10.3         | 1-1          | P                 |
| Copper                |                  | 60.2093               | .11  | 64.9399             | 1-1       | 7.6          | 1+1          | P_                |
| Iron                  |                  | 4093.1788             | .    | 5566.1732           | <b> _</b> | 30.5         | *            | P                 |
| Lead                  |                  | 72.6180<br>941.4519 B | .    | 73.1514             | =         | 0.7          | 1-1          | P_                |
| Magnesium             | ·                |                       | 11   | 735.9388            | B         | 24.5         | +            | P<br>P            |
| Manganese             | 0.1085           | 67.6339               | .] } | 49.1437             | 1-1       | 31.7         | *            | C∇                |
| Mercury               | 8.4241           | 0.1985                | -    | 29.7639             | -         | 1.6<br>128.1 | 1-1          | P                 |
| Nickel<br>Potassium   | 0.4241           | 370.9947 B            | 1    | 354.4768            | B         | 1-120.1-     |              | p-                |
| Selenium              |                  | 0.9328 B              |      | 0.6318              | וט        | 200.0        | 1-1          | P-                |
| Silver                |                  | 0.2142 B              |      | 0.2106              |           | 200.0        | -            | P-                |
| Sodium                |                  | 539.0390 B            |      | 563.1529            | В         | 4.4          | 1-1          | P-                |
| Thallium              |                  | 0.6318 U              |      | 0.6318              | บิโ       |              | 1-1          | P-                |
| Vanadium              |                  | 9.5295 B              |      | 8.3735              |           | 12.9         | 1-1          | $\mathbf{p}^{-1}$ |
| Zinc                  |                  | 704.4357              |      | 501.0760            |           | 33.7         | <del>*</del> | P-                |
| Cyanide               |                  |                       |      |                     | -         |              |              | NR                |
|                       |                  |                       |      |                     |           |              | 121          |                   |

### LABORATORY CONTROL SAMPLE

| Analyte                                                                                                                                                                                                            | Aque<br>True | eous (ug/I<br>Found | L)<br>%R | True                                                                                                                                              | Sol:<br>Found                                                                                                                    | id<br>C |                                                                                                                             | mits                                                                                                                                | %R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aluminum_ Antimony_ Arsenic_ Barium_ Beryllium Cadmium_ Calcium_ Chromium_ Cobalt_ Copper_ Iron_ Lead_ Magnesium Manganese Mercury_ Nickel_ Potassium Selenium_ Silver_ Sodium_ Thallium_ Vanadium_ Zinc_ Cyanide_ |              |                     |          | 309.0 213.0 930.0 930.0 18.8 41.6 184000.5 96.5 140.0 6680.0 21000.0 224.0 113000.0 224.0 113000.0 201.0 12.3 56.8 102.4 37.0 20.9 92.8 38.1 65.8 | 272.8 238.9 983.3 5.4 18.5 46.5 174117.1 95.4 141.4 6388.2 20546.4 210.0 114597.8 200.5 10.1 58.5 56.4 40.5 21.0 304.7 35.6 63.6 |         | 193.1 129.4 613.6 2.5 15.3 32.1 142933.0 77.8 115.4 5727.3 16831.3 167.6 97493.0 167.9 7.8 43.5 0.0 17.6 13.2 0.0 21.6 53.0 | 424.2 297.2 1247.0 8.1 22.2 51.1 225376.0 115.2 165.0 7633.1 25193.0 280.5 128886.0 234.4 16.9 70.1 379.3 56.4 28.5 277.4 51.6 78.6 | 88.3<br>112.2<br>105.7<br>101.9<br>98.4<br>111.8<br>-98.9<br>101.0<br>-97.8<br>-97.8<br>-97.8<br>-93.7<br>101.4<br>-98.1<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109. |

# 10 Instrument Detection Limits (Quarterly)

| Lab Name: | AMERICAN_ANAI | LYTICAL_AND_T  | Contract: | 68M00086 |          |        |
|-----------|---------------|----------------|-----------|----------|----------|--------|
| Lab Code: | AATS Cas      | se No.: 30721_ | SAS No.:  |          | SDG No.: | ME21MO |
| ICP ID Nu | mber:         | TJA_ET2        | Date:     | 06/07/02 |          |        |
| Flame AA  | ID Number :   |                |           |          |          |        |
| Furnace A | A ID Number : |                |           |          |          |        |

|                       | <del></del>             |                 | <del></del>    | <del> </del>  | ·    |
|-----------------------|-------------------------|-----------------|----------------|---------------|------|
| Analyte               | Wave-<br>length<br>(nm) | Back-<br>ground | CRDL<br>(ug/L) | IDL<br>(ug/L) | м    |
| Aluminum              |                         |                 | 200            |               | NR   |
| Antimony_             |                         |                 | 60             | <del></del>   | NR-  |
| Arsenic -             |                         |                 | 10             |               | NR - |
| Barium —              |                         |                 | 200            |               | NR-  |
| Beryllium             |                         |                 | 5              |               | NR   |
| Cadmium               |                         |                 | 5              | <del></del>   | NR   |
| Calcium_              |                         |                 | 5000           |               | NR   |
| Chromium_             |                         |                 | 10             |               | NR_  |
| Cobalt                |                         |                 | 50             |               | NR_  |
| Copper                |                         |                 | 25_            |               | NR_  |
| Iron                  | _271.44_                |                 | 100            | 7.0           | P    |
| Lead                  | _220.35_                |                 | 3_             | 1.0           | P    |
| Magnesium             |                         |                 | 5000           |               | NR_  |
| Manganese             |                         |                 | 15_            |               | NR_  |
| Mercury               | -333 -60                |                 | 0.2            |               | NR_  |
| Nickel                | _231.60_                |                 | 40             | 1.0           | P    |
| Potassium             | 196.03                  |                 | 5000_<br>5     |               | NR_p |
| Selenium_<br>  Silver | -130.03-                |                 | 10-            | 3.0           | NR   |
| Sodium                |                         |                 | 5000           |               | NR-  |
| Thallium              | 190.87                  |                 |                | 3.0           | P -  |
| Vanadium              | 30.0/-                  |                 | 50-            |               | NR   |
| Zinc                  |                         |                 |                |               | NR-  |
| Cyanide_              |                         |                 | 10-            |               | NR-  |
| C1 am + GE            |                         |                 |                |               | **** |

| Comments: |                 | · |  |
|-----------|-----------------|---|--|
|           |                 |   |  |
|           |                 |   |  |
|           |                 |   |  |
|           | <br><del></del> |   |  |

FORM X - IN

Instrument Detection Limits (Quarterly)

Lab Name: AMERICAN\_ANALYTICAL\_AND\_T Contract: 68W00086\_\_

Lab Code: AATS\_\_ Case No.: 30721\_ SAS No.: \_\_\_\_ SDG No.: ME21M0

ICP ID Number: TJA\_ET3\_\_\_\_ Date: 05/24/02

Flame AA ID Number :

Furnace AA ID Number : \_\_\_\_\_

| 1         |                         | <del> </del> |                 | <del></del> | ı   |
|-----------|-------------------------|--------------|-----------------|-------------|-----|
| Analysta  | Wave-<br>length<br>(nm) | Back-        | CRDL            | IDL         | M   |
| Analyte   | (1411)                  | ground       | (ug/L)          | (ug/L)      | 141 |
| Aluminum  | 308.16                  |              | 200             | 54.0        | P   |
| Antimony_ | 206.84                  |              | <sub>60</sub> - | 9.0         | P-  |
| Arsenic   | 189.04                  |              | 10-             | 4.0         | P-  |
| Barium    | 493.41                  |              | 200             | 10.0        | P   |
| Beryllium | 313.04                  |              | 5-              | 1.0         | P   |
| Cadmium   | 226.50                  | <del></del>  | 5               | 1.0         | P-  |
| Calcium   | 317.93                  |              | 5000            | 349.0       | P   |
| Chromium  | <sup>-</sup> 267.75     |              | 10              | 2.0         | P-  |
| Cobalt    | 228.61                  |              | 50              | 5.0         | P-  |
| Copper    | 324.75                  |              | 25              | 2.0         | P   |
| Iron      | 7271.44                 |              | 100             | 27.0        | P-  |
| Lead      |                         |              | 3               |             | NR  |
| Magnesium | 279.81                  |              | 5000            | 406.0       | P _ |
| Manganese | <sup>257.61</sup>       |              | 15              | 1.0         | P   |
| Mercury   |                         |              | 0.2             |             | NR  |
| Nickel    | 231.60                  |              | 40              | 5.0         | P   |
| Potassium | <u>_</u> 766.49_        |              | 5000            | 282.0       | P   |
| Selenium_ | <u>[</u> 196.03]        |              | 5_              | 4.0         | P   |
| Silver    | _328.07_                |              | 10              | 1.0         | P   |
| Sodium    | _588.99_                |              | 5000_           | 470.0       | P   |
| Thallium  |                         |              | 10_             |             | NR_ |
| Vanadium_ | _292.40_                |              | 50              | 1.0         | P   |
| Zinc      | _213.86_                |              | 20_             | 4.0         | P   |
| Cyanide   |                         |              | 10_             |             | NR_ |

| Comments: |  |
|-----------|--|
|           |  |
|           |  |
|           |  |
|           |  |

FORM X - IN

# 10 Instrument Detection Limits (Quarterly)

| Lab Name: AMERICAN_ANALYTICAL_AND_T | Contract: | 68W00086 |            |        |
|-------------------------------------|-----------|----------|------------|--------|
| Lab Code: AATS Case No.: 30721_     | SAS No.:  |          | SDG No.: M | ME21MO |
| ICP ID Number:                      | Date:     | 05/07/02 |            |        |
| Flame AA ID Number : LEEMAN_B       |           |          |            |        |
| Furnace AA ID Number :              |           |          |            |        |

| 1         |                         | <del>,                                    </del> |                | <del></del>   |                 |
|-----------|-------------------------|--------------------------------------------------|----------------|---------------|-----------------|
| Analyte   | Wave-<br>length<br>(nm) | Back-<br>ground                                  | CRDL<br>(ug/L) | IDL<br>(ug/L) | М               |
| Aluminum  |                         |                                                  | 200            | ]             | NR              |
| Antimony_ | <del></del>             |                                                  | 60             |               | NR <sup>-</sup> |
| Arsenic - |                         |                                                  | 10-            |               | NR-             |
| Barium    |                         |                                                  | 200            |               | NR              |
| Beryllium |                         |                                                  | 5              |               | NR -            |
| Cadmium   |                         |                                                  | 5              |               | NR              |
| Calcium_  |                         |                                                  | 5000           |               | NR              |
| Chromium_ |                         |                                                  | 10_            |               | NR_             |
| Cobalt    |                         |                                                  | 50_            |               | NR_             |
| Copper    |                         |                                                  | 25             |               | NR_             |
| Iron      |                         |                                                  | 100            |               | NR_             |
| Lead      |                         |                                                  | 3_             |               | NR_             |
| Magnesium |                         |                                                  | 5000           |               | NR_             |
| Manganese | -8-3-8-8                |                                                  | 15             |               | NR_             |
| Mercury   | _253.70_                |                                                  | 0.2            | 0.1           | CV_             |
| Nickel    |                         |                                                  | 40             |               | NR_             |
| Potassium |                         |                                                  | <u>50</u> 00_  |               | NR_             |
| Selenium_ | <del></del>             |                                                  | 5_             |               | NR_             |
| Silver    |                         |                                                  | 10             | ·             | NR_             |
| Sodium    |                         |                                                  | 5000           |               | NR_             |
| Thallium_ |                         |                                                  |                | <del></del>   | NR_             |
| Vanadium_ |                         |                                                  | 50             |               | NR_             |
| Zinc      |                         |                                                  | 20             |               | NR_             |
| Cyanide   |                         |                                                  | 10             |               | NR_             |

| Comments: | · |  |  |
|-----------|---|--|--|
|           |   |  |  |
|           |   |  |  |
|           |   |  |  |

FORM X - IN

#### 13 PREPARATION LOG

Lab Name: AMERICAN\_ANALYTICAL\_AND\_T Contract: 68W00086\_\_\_

Lab Code: AATS\_\_ Case No.:\_30721\_ SAS No.: \_\_\_\_ SDG No.:ME21M0

Method: P\_

| Sample Preparati | on Weight Volume (gram) (mL)                                            |
|------------------|-------------------------------------------------------------------------|
|                  |                                                                         |
| LCSS             | 1.00 200<br>1.02 200<br>1.03 200<br>1.03 200<br>1.03 200<br>200 200<br> |
|                  |                                                                         |
|                  |                                                                         |
|                  |                                                                         |
|                  |                                                                         |

FORM XIII - IN

#### 13 . PREPARATION LOG

Lab Name: AMERICAN\_ANALYTICAL\_AND\_T Contract: 68W00086\_\_

Lab Code: AATS\_\_ Case No.:\_30721\_ SAS No.: \_\_\_\_ SDG No.:ME21M0

Method: CV

| EPA   Sample   Preparation   Weight (gram)   Volume (mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      | +···                |                                                     |                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------|-----------------------------------------------------|---------------------------------|
| LCSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample                                               | Preparation<br>Date | Weight<br>(gram)                                    |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LCSS<br>ME21M0 —<br>ME21M1 —<br>ME21M1D —<br>ME21M1S | 07/18/02            | (gram)<br>-0.20<br>-0.23<br>-0.20<br>-0.20<br>-0.20 | 100<br>100<br>100<br>100<br>100 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      | <del></del>         |                                                     |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                     |                                                     |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                     |                                                     |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                     |                                                     |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                     |                                                     |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ļ ————                                               |                     |                                                     |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                     |                                                     |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                     |                                                     |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                     |                                                     |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                     |                                                     |                                 |
| <del>                                                       _     _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _  </del> | J ————————————————————————————————————               |                     |                                                     |                                 |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I ————— i                                            | <del></del>         |                                                     |                                 |

FORM XIII - IN

### UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

#### REGION V

ESD Central Regional Laboratory
Data Tracking Form for Contract Samples

| Sample Delivery Group: _                                                                                                     | MEZIMO               | CERCLIS No:                                                                                                                   | TBD                                                      |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|--|--|
| Case No: 307                                                                                                                 | 21                   | Site Name/Location:                                                                                                           | Sauger SiTE H+                                           |  |  |  |
| Contractor of EPA Lab:                                                                                                       | AAIS                 | Data User:                                                                                                                    | TETRA TECH                                               |  |  |  |
| No. of Samples:                                                                                                              | 2                    | Date Sampled or Date R                                                                                                        | eceived: 7-24-02                                         |  |  |  |
| Have Chain-of-Custody records been received? YesNo                                                                           |                      |                                                                                                                               |                                                          |  |  |  |
| Are basic data forms in? No of samples claimed:                                                                              | (es No               | No. of samples recei                                                                                                          | ved:                                                     |  |  |  |
| Received by: 2 up                                                                                                            |                      |                                                                                                                               |                                                          |  |  |  |
| Received by LSSS: _ とv                                                                                                       | LA LL. DIXE          | n/EST Date                                                                                                                    | 7-24-02                                                  |  |  |  |
| Review started: 8-                                                                                                           | 9-02                 | Reviewer Signature:                                                                                                           | Hans                                                     |  |  |  |
| Total time spent on review:    Copied by:   Reviewer Signature:   Reviewer Signature:                                        |                      |                                                                                                                               |                                                          |  |  |  |
| Copied by:                                                                                                                   | , , , , , , , , ,    | Date                                                                                                                          | »:                                                       |  |  |  |
| Mailed to user by:                                                                                                           |                      | Ďate                                                                                                                          | :                                                        |  |  |  |
| DATA USER: Please fill in the blanks below and return this form to: Sylvia Griffin, Data Mgmt. Coordinator, Region V, ML-10C |                      |                                                                                                                               |                                                          |  |  |  |
| Data received by:                                                                                                            |                      | Date                                                                                                                          | :                                                        |  |  |  |
| Data review received by: _                                                                                                   |                      | Date                                                                                                                          | •                                                        |  |  |  |
| Inorganic Data Complete Organic Data Complete Dioxin data Complete SAS Data Complete PROBLEMS: Please indic                  | ate reasons why date | [] Suitable for Intended [] Suitable for Intended [] Suitable for Intended [] Suitable for Intended are not suitable for your | Purpose [] / if OK Purpose [] / if OK Purpose [] / if OK |  |  |  |
| Received by Data Momt. C                                                                                                     | operating for Files  | Dara                                                                                                                          |                                                          |  |  |  |